1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
/*!
This crate provides an implementation of a multi-producer, multi-consumer
channel. Channels come in three varieties:

1. Asynchronous channels. Sends never block. Its buffer is only limited by the
   available resources on the system.
2. Synchronous buffered channels. Sends block when the buffer is full. The
   buffer is depleted by receiving on the channel.
3. Rendezvous channels (synchronous channels without a buffer). Sends block
   until a receive has consumed the value sent. When a sender and receiver
   synchronize, they are said to *rendezvous*.

Asynchronous channels are created with `chan::async()`. Synchronous channels
are created with `chan::sync(k)` where `k` is the buffer size. Rendezvous
channels are created with `chan::sync(0)`.

all channels are split into the same two types upon creation: a `Sender` and
a `Receiver`. Additional senders and receivers can be created with reckless
abandon by calling `clone`.

When all senders are dropped, the channel is closed and no other sends are
possible. In a channel with a buffer, receivers continue to consume values
until the buffer is empty, at which point, a `None` value is always returned
immediately.

No special semantics are enforced when all receivers are dropped. Asynchronous
sends will continue to work. Synchronous sends will block indefinitely when
the buffer is full. A send on a rendezvous channel will also block
indefinitely. (**NOTE**: This could be changed!)

All channels satisfy *both* `Send` and `Sync` and can be freely mixed in
`chan_select!`. Said differently, the synchronization semantics of a channel
are encoded upon construction, but are otherwise indistinguishable to the
type system.

Values sent on channels are subject to the normal restrictions Rust has on
values crossing thread boundaries. i.e., Values must implement `Send` and/or
`Sync`. (An `Rc<T>` *cannot* be sent on a channel, but a channel can be sent
on a channel!)


# Example: rendezvous channel

A simple example demonstrating a rendezvous channel:

```
use std::thread;

let (send, recv) = chan::sync(0);
thread::spawn(move || send.send(5));
assert_eq!(recv.recv(), Some(5)); // blocks until the previous send occurs
```


# Example: synchronous channel

Similarly, an example demonstrating a synchronous channel:

```
let (send, recv) = chan::sync(1);
send.send(5); // doesn't block because of the buffer
assert_eq!(recv.recv(), Some(5));
```


# Example: multiple producers and multiple consumers

An example demonstrating multiple consumers and multiple producers:

```
use std::thread;

let r = {
    let (s, r) = chan::sync(0);
    for letter in vec!['a', 'b', 'c', 'd'] {
        let s = s.clone();
        thread::spawn(move || {
            for _ in 0..10 {
                s.send(letter);
            }
        });
    }
    // This extra lexical scope will drop the initial
    // sender we created. Thus, the channel will be
    // closed when all threads spawned above has completed.
    r
};

// A wait group lets us synchronize the completion of multiple threads.
let wg = chan::WaitGroup::new();
for _ in 0..4 {
    wg.add(1);
    let wg = wg.clone();
    let r = r.clone();
    thread::spawn(move || {
        for letter in r {
            println!("Received letter: {}", letter);
        }
        wg.done();
    });
}

// If this was the end of the process and we didn't call `wg.wait()`, then
// the process might quit before all of the consumers were done.
// `wg.wait()` will block until all `wg.done()` calls have finished.
wg.wait();
```


# Example: Select on multiple channel sends/receives

An example showing how to use `chan_select!` to synchronize on sends
or receives.

```
#[macro_use]
extern crate chan;

use std::thread;

// Emits the fibonacci sequence on the given channel until `quit` receives
// a sentinel value.
fn fibonacci(s: chan::Sender<u64>, quit: chan::Receiver<()>) {
    let (mut x, mut y) = (0, 1);
    loop {
        // Select will block until at least one of `s.send` or `quit.recv`
        // is ready to succeed. At which point, it will choose exactly one
        // send/receive to synchronize.
        chan_select! {
            s.send(x) => {
                let oldx = x;
                x = y;
                y = oldx + y;
            },
            quit.recv() => {
                println!("quit");
                return;
            }
        }
    }
}

fn main() {
    let (s, r) = chan::sync(0);
    let (qs, qr) = chan::sync(0);
    // Spawn a thread and ask for the first 10 numbers in the fibonacci
    // sequence.
    thread::spawn(move || {
        for _ in 0..10 {
            println!("{}", r.recv().unwrap());
        }
        // Dropping all sending channels causes the receive channel to
        // immediately and always synchronize (because the channel is closed).
        drop(qs);
    });
    fibonacci(s, qr);
}
```


# Example: non-blocking sends/receives

This crate specifically does not expose methods like `try_send` or `try_recv`.
Instead, you should prefer using `chan_select!` to perform a non-blocking
send or receive. This can be done by telling select what to do when no
synchronization events are available.

```
# #[macro_use] extern crate chan; fn main() {
let (s, _) = chan::sync(0);
chan_select! {
    default => println!("Send failed."),
    s.send("some data") => println!("Send succeeded."),
}
# }
```

When `chan_select!` first runs, it will check if `s.send(...)` can succeed
*without blocking*. If so, `chan_select!` will permit the channels to
rendezvous. However, if there is no `recv` call to accept the send, then
`chan_select!` will immediately execute the `default` arm.


# Example: the sentinel channel idiom

When writing concurrent programs with `chan`, you will often find that you need
to somehow "wait" until some operation is done. For example, let's say you want
to run a function in a separate thread, but wait until it completes. Here's
one way to do it:

```rust
use std::thread;

fn do_work(done: chan::Sender<()>) {
    // do something

    // signal that we're done.
    done.send(());
}

fn main() {
    let (sdone, rdone) = chan::sync(0);
    thread::spawn(move || do_work(sdone));
    // block until work is done, and then quit the program.
    rdone.recv();
}
```

In effect, we've created a new channel that sends unit values. When we're
done doing work, we send a unit value and `main` waits for it to be delivered.

Another way of achieving the same thing is to simply close the channel. Once
the channel is closed, any previously blocked receive operations become
immediately unblocked. What's even cooler is that channels are closed
automatically when all senders are dropped. So the new program looks something
like this:

```rust
use std::thread;

fn do_work(_done: chan::Sender<()>) {
    // do something
}

fn main() {
    let (sdone, rdone) = chan::sync(0);
    thread::spawn(move || do_work(sdone));
    // block until work is done, and then quit the program.
    rdone.recv();
}
```

We no longer need to explicitly do anything with the `done` channel. We give
`do_work` ownership of the channel, but as soon as the function stops
executing, `done` is dropped, the channel is closed and `rdone.recv()`
unblocks.


# Example: I want more!

There are some examples in this crate's repository:
https://github.com/BurntSushi/chan/tree/master/examples

Here is a nice example using the `chan-signal` crate to read lines from
stdin while gracefully quitting after receiving a `INT` or `TERM`
signal:
https://github.com/BurntSushi/chan-signal/blob/master/examples/read_names.rs

A non-trivial program for periodically sending email with the output of
running a command: https://github.com/BurntSushi/rust-cmail (The source is
commented more heavily than normal.)


# When are channel operations non-blocking?

Non-blocking in this context means "a send/recv operation can synchronize
immediately." (Under the hood, a mutex may still be acquired, which could
block.)

The following is a list of all cases where a channel operation is considered
non-blocking:

* A send on a synchronous channel whose buffer is not full.
* A receive on a synchronous channel with a non-empty buffer.
* A send on an asynchronous channel.
* A rendezvous send or recv when a corresponding recv or send operation is
already blocked, respectively.
* A receive on any closed channel.

Non-blocking semantics are important because they affect the behavior of
`chan_select!`. In particular, a `chan_select!` with a `default` arm will
execute the `default` case if and only if all other operations are blocked.


# Which channel type should I use?

[From Ken Kahn](http://www.eros-os.org/pipermail/e-lang/2003-January/008183.html):

> About 25 years ago I went to dinner with Carl Hewitt and Robin Milner (of
> CSS and pi calculus fame) and they were arguing about synchronous vs.
> asynchronous communication primitives. Carl used the post office metaphor
> while Robin used the telephone. Both quickly admitted that one can implement
> one in the other.

With three channel types to choose from, it may not always be clear which one
you should use. In fact, there has been a long debate over which are better.
Here are some rough guidelines:

* Historically, asynchronous channels have been associated with the actor
model, which means they're a little out of place in a library inspired by
communicating sequential processes. Nevertheless, an unconstrained buffer can
be occasionally useful.
* Synchronous channels are useful because their stricter synchronization
semantics can make it easier to reason about the flow of your program. In
particular, with a rendezvous channel, one knows that a `send` unblocks only
when a corresponding `recv` consumes the sent value. This makes it *feel*
an awful lot like a function call!


# Warning: leaks

Channels can be leaked! In particular, if all receivers have been dropped,
then any future sends will block. Usually this is indicative of a bug in your
program.

For example, consider a "generator" style pattern where a thread produces
values on a channel and another thread consumes in an iterator.

```no_run
use std::thread;

let (s, r) = chan::sync(0);

thread::spawn(move || {
    for val in r {
        if val >= 2 {
            break;
        }
    }
});

s.send(1);
s.send(2);
// This will deadlock because the loop in the thread
// above quits after receiving `2`.
s.send(3);
```

If the iterator loop quits early, the channel's buffer could fill up, which
will indefinitely block all future send operations.

(These leaks/deadlocks are detectable in most circumstances, and a `send`
operation could be made to wake up and either return an error or panic. The
semantics here are still experimental.)


# Warning: more leaks

It will always be possible to leak a channel in safe code regardless of the
channel's semantics. For example:

```no_run
use std::mem::forget;

let (s, r) = chan::sync::<()>(0);
forget(s);
// Blocks forever because the channel is never closed.
r.recv();
```

In this case, it is impossible for the channel to close because the internal
reference count will never reach `0`.


# Warning: performance

The primary purpose of this crate is to provide a safe, concurrent abstraction.
Notably, it is *not* a zero-cost abstraction. It is not even a near-zero-cost
abstraction. Throughput on a channel is startlingly low (see the benchmarks
in this crate's repository). Therefore, the channels provided in this crate
are most useful as a means to structure concurrent programs at a coarse level.

If your requirements call for performant synchronization of data, `chan` is not
the crate you're looking for.


# Prior art

The semantics encoded in the channels provided by this crate should mirror or
closely mirror the semantics provided by channels in Go. This includes
select statements! The major difference between concurrent programs written
with `chan` and concurrent programs written with Go is that Go programs can
benefit from being fast and loose with creating goroutines. In `chan`, each
"goroutine" is just an OS thread.

In terms of writing code:

1. Go programs will feature explicit closing of channels. In `chan`, channels
   are closed **only** when all senders have been dropped.
2. Since there is no such thing as a "nil" channel in `chan`, the semantics Go
   has for nil channels (both sends and receives block indefinitely) do not
   exist in `chan`.
3. `chan` does not expose `len` or `cap` methods. (For no reason other than
   to start with a totally minimal API. In particular, calling `len` or `cap`
   on a channel is often The Wrong Thing. But not always. So this restriction
   will probably be lifted.)
4. In `chan`, all channels are either senders or receivers. There is no
   "bidirectional" channel. This is manifest in how channel memory is managed:
   channels are closed when all senders are dropped.

Of course, Go is not the origin of these ideas, but it has been the
strongest influence on the design of this library, and at least one of its
authors has done substantial research on the integration of CSP and programming
languages.
*/

#![deny(missing_docs)]

extern crate rand;

use std::collections::VecDeque;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ops::Drop;
use std::sync::{Arc, Condvar, Mutex, MutexGuard};
use std::sync::atomic::{ATOMIC_USIZE_INIT, AtomicUsize, Ordering};
use std::thread;

use notifier::Notifier;
pub use select::{Select, SelectRecvHandle, SelectSendHandle};
use tracker::Tracker;
pub use wait_group::WaitGroup;

// This enables us to (in practice) uniquely identify any particular channel.
// A better approach would be to use the pointer's address in memory, but it
// looks like `Arc` doesn't support that (yet?).
//
// Any other ideas? ---AG
//
// N.B. This is combined with ChannelId to distinguish between the sending
// and receiving halves of a channel.
static NEXT_CHANNEL_ID: AtomicUsize = ATOMIC_USIZE_INIT;

mod notifier;
mod select;
mod tracker;
mod wait_group;

/// Create a synchronous channel with a possibly empty buffer.
///
/// When the `size` is zero, the buffer is empty and the channel becomes a
/// rendezvous channel. A rendezvous channel blocks send operations until
/// a corresponding receive operation consumes the sent value.
///
/// When the `size` is non-zero, the send operations will only block when the
/// buffer is full. Send operations only unblock when a receive operation
/// removes an element from the buffer.
///
/// Values are guaranteed to be received in the same order that they are sent.
///
/// The send and receive values returned can be cloned arbitrarily (i.e.,
/// multi-producer/multi-consumer) and moved to other threads.
///
/// When all senders are dropped, the channel is closed automatically. No
/// more values may be sent on a closed channel. Once a channel is closed and
/// the buffer is empty, all receive operations return `None` immediately.
/// (If a channel is closed and there are still values in the buffer, then
/// receive operations will retrieve those first.)
///
/// When all receivers are dropped, no special action is taken. When the buffer
/// is full, all subsequent send operations will block indefinitely.
///
/// # Examples
///
/// An example of a rendezvous channel:
///
/// ```
/// use std::thread;
///
/// let (send, recv) = chan::sync(0);
/// thread::spawn(move || send.send(5));
/// assert_eq!(recv.recv(), Some(5)); // blocks until the previous send occurs
/// ```
///
/// An example of a synchronous buffered channel:
///
/// ```
/// let (send, recv) = chan::sync(1);
///
/// send.send(5); // doesn't block because of the buffer
/// assert_eq!(recv.recv(), Some(5));
///
/// drop(send); // closes the channel
/// assert_eq!(recv.recv(), None);
/// ```
pub fn sync<T>(size: usize) -> (Sender<T>, Receiver<T>) {
    let send = Channel::new(size, false);
    let recv = send.clone();
    (send.into_sender(), recv.into_receiver())
}

/// Create an asynchronous channel with an unbounded buffer.
///
/// Since the buffer is unbounded, send operations always succeed immediately.
///
/// Receive operations succeed only when there is at least one value in the
/// buffer.
///
/// Values are guaranteed to be received in the same order that they are sent.
///
/// The send and receive values returned can be cloned arbitrarily (i.e.,
/// multi-producer/multi-consumer) and moved to other threads.
///
/// When all senders are dropped, the channel is closed automatically. No
/// more values may be sent on a closed channel. Once a channel is closed and
/// the buffer is empty, all receive operations return `None` immediately.
/// (If a channel is closed and there are still values in the buffer, then
/// receive operations will retrieve those first.)
///
/// When all receivers are dropped, no special action is taken. When the buffer
/// is full, all subsequent send operations will block indefinitely.
///
/// # Example
///
/// Asynchronous channels are nice when you just want to enqueue a bunch
/// of values up front:
///
/// ```
/// let (s, r) = chan::async();
///
/// for i in 0..10 {
///     s.send(i);
/// }
///
/// drop(s); // closing the channel lets the iterator stop
/// let numbers: Vec<i32> = r.iter().collect();
/// assert_eq!(numbers, (0..10).collect::<Vec<i32>>());
/// ```
///
/// (Others should help me come up with more compelling examples of
/// asynchronous channels.)
pub fn async<T>() -> (Sender<T>, Receiver<T>) {
    let send = Channel::new(0, true);
    let recv = send.clone();
    (send.into_sender(), recv.into_receiver())
}

/// Creates a new rendezvous channel that is dropped after a timeout.
///
/// `duration` is specified in milliseconds.
///
/// When the channel is dropped, any receive operation on the returned channel
/// will be unblocked.
///
/// N.B. This will eventually be deprecated when we get a proper duration type.
///
/// # Example
///
/// ```
/// let wait = chan::after_ms(1000);
/// // Unblocks after 1 second.
/// wait.recv();
/// ```
pub fn after_ms(duration: u32) -> Receiver<()> {
    let (send, recv) = sync(0);
    thread::spawn(move || {
        thread::sleep_ms(duration);
        drop(send);
    });
    recv
}

/// Creates a new rendezvous channel that is "ticked" every duration.
///
/// `duration` is specified in milliseconds.
///
/// When `duration` is `0`, no ticks are ever sent.
///
/// When `duration` is non-zero, then a new channel is created and sent at
/// every duration. When the sent channel is dropped, the timer is reset
/// and the process repeats after the duration.
///
/// This is especially convenient because it keeps the ticking in sync with
/// the code that uses it. Namely, the ticks won't "build up."
///
/// N.B. There is no way to reclaim the resources used by this function.
/// If you stop receiving on the channel returned, then the thread spawned by
/// `tick_ms` will block indefinitely.
///
/// # Examples
///
/// This is most useful when used in `chan_select!` because the received
/// sentinel channel gets dropped only after the correspond arm has
/// executed. At which point, the ticker is reset and waits to tick until
/// `duration` milliseconds lapses *after* the `chan_select!` arm is executed.
///
/// ```
/// # #[macro_use] extern crate chan; fn main() {
/// use std::thread;
///
/// let tick = chan::tick_ms(100);
/// let boom = chan::after_ms(500);
/// loop {
///     chan_select! {
///         default => { println!("   ."); thread::sleep_ms(50); },
///         tick.recv() => println!("tick."),
///         boom.recv() => { println!("BOOM!"); return; },
///     }
/// }
/// # }
/// ```
pub fn tick_ms(duration: u32) -> Receiver<Sender<()>> {
    let (send, recv) = sync(0);
    if duration == 0 {
        // Leak the send channel so that it never gets closed and
        // `recv` never synchronizes.
        ::std::mem::forget(send);
    } else {
        thread::spawn(move || {
            loop {
                thread::sleep_ms(duration);
                let (sdone, rdone) = sync(0);
                send.send(sdone);
                // Block until `sdone` gets closed by the caller.
                rdone.recv();
            }
        });
    }
    recv
}

/// A value that uniquely identifies one half of a channel.
///
/// For any `s: Sender<T>`, `s.id() == s.clone().id()`. Similarly for
/// any `r: Receiver<T>`.
#[doc(hidden)]
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub struct ChannelId(ChannelKey);

#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
enum ChannelKey {
    Sender(u64),
    Receiver(u64),
}

impl ChannelId {
    fn sender(id: u64) -> ChannelId {
        ChannelId(ChannelKey::Sender(id))
    }

    fn receiver(id: u64) -> ChannelId {
        ChannelId(ChannelKey::Receiver(id))
    }
}

/// An iterator over values received in a channel.
pub struct Iter<T> {
    chan: Receiver<T>,
}

impl<T> Iterator for Iter<T> {
    type Item = T;
    fn next(&mut self) -> Option<T> { self.chan.recv() }
}

impl<T> IntoIterator for Receiver<T> {
    type Item = T;
    type IntoIter = Iter<T>;
    fn into_iter(self) -> Iter<T> { Iter { chan: self } }
}

impl<'a, T> IntoIterator for &'a Receiver<T> {
    type Item = T;
    type IntoIter = Iter<T>;
    fn into_iter(self) -> Iter<T> { self.iter() }
}

/// The sending half of a channel.
///
/// Senders can be cloned any number of times and sent to other threads.
///
/// Senders also implement `Sync`, which means they can be shared among threads
/// without cloning if the channels can be proven to outlive the execution
/// of the threads.
///
/// When all sending halves of a channel are dropped, the channel is closed
/// automatically. When a channel is closed, no new values can be sent on the
/// channel. Also, all receive operations either return any values left in the
/// buffer or return immediately with `None`.
#[derive(Debug)]
pub struct Sender<T>(Channel<T>);

/// The receiving half of a channel.
///
/// Receivers can be cloned any number of times and sent to other threads.
///
/// Receivers also implement `Sync`, which means they can be shared among
/// threads without cloning if the channels can be proven to outlive the
/// execution of the threads.
///
/// When all receiving halves of a channel are dropped, no special action is
/// taken. If the buffer in the channel is full, all sends will block
/// indefinitely.
#[derive(Debug)]
pub struct Receiver<T>(Channel<T>);

/// All senders and receivers are just newtypes around a more base channel.
///
/// i.e., All senders and receivers have direct access to any underlying
/// buffer.
#[derive(Debug)]
struct Channel<T>(Arc<Inner<T>>);

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum ChannelType {
    Async,
    Rendezvous,
    Buffered,
}

struct Inner<T> {
    /// An auto-incrementing id.
    id: u64,
    /// Manages subscriptions to channels (e.g., from a `chan_select!`).
    notify: Notifier,
    /// Tracks reference counts of senders and receivers.
    track: Tracker,
    /// A condition variable on the contents of `data`.
    cond: Condvar,
    /// The capacity of a synchronous buffer. This corresponds to the number
    /// of elements allowed in the buffer before send operations block.
    ///
    /// For asynchronous and rendezvous channels, this is always 0.
    cap: usize,
    /// The type of the channel.
    ty: ChannelType,
    /// Synchronized data in the channel. e.g., the queued values.
    data: Mutex<Data<T>>,
}

#[derive(Debug)]
struct Data<T> {
    /// Whether the channel is closed or not. Once set to `true` it can never
    /// be changed.
    closed: bool,
    /// The number of senders waiting. (Currently only used in rendezvous
    /// channels.)
    waiting_send: usize,
    /// The number of receivers waiting. (Currently only used in rendezvous
    /// channels.)
    waiting_recv: usize,
    /// The actual data stored by the user.
    user: UserData<T>,
}

#[derive(Debug)]
enum UserData<T> {
    /// Used for rendezvous channels. We only need to ever store one value.
    One(Option<T>),
    /// A ring buffer for synchronous channels.
    /// There's definitely a more efficient representation, but I don't think
    /// we really care.
    Ring { queue: Vec<Option<T>>, pos: usize, len: usize },
    /// An unbounded queue for asynchronous channels.
    Queue(VecDeque<T>),
}

// The SendOp and RecvOp types unify the return values of all channel
// operations. Their primary purpose is to permit the caller to retrieve the
// channel's lock after the channel operation is done without the lock ever
// being released. (This is critical functionality for `Select`.)
//
// N.B. The `WouldBlock` variants are only constructed if a non-blocking
// operation is used (i.e., try_send or try_recv).

struct SendOp<'a, T: 'a> {
    lock: MutexGuard<'a, Data<T>>,
    kind: SendOpKind<T>,
}

#[derive(Debug)]
enum SendOpKind<T> {
    Ok,
    Closed(T),
    WouldBlock(T),
}

struct RecvOp<'a, T: 'a> {
    lock: MutexGuard<'a, Data<T>>,
    kind: RecvOpKind<T>,
}

#[derive(Debug)]
enum RecvOpKind<T> {
    Ok(T),
    Closed,
    WouldBlock,
}

impl<T> Sender<T> {
    /// Send a value on this channel.
    ///
    /// If this is an asnychronous channel, `send` never blocks.
    ///
    /// If this is a synchronous channel, `send` only blocks when the buffer
    /// is full.
    ///
    /// If this is a rendezvous channel, `send` blocks until a corresponding
    /// `recv` retrieves `val`.
    ///
    /// Values are guaranteed to be received in the same order that they
    /// are sent.
    ///
    /// This operation will never `panic!` but it can deadlock.
    pub fn send(&self, val: T) {
        self.send_op(self.inner().lock(), false, val).unwrap()
    }

    fn try_send(&self, val: T) -> Result<(), T> {
        self.send_op(self.inner().lock(), true, val).into_result()
    }

    fn send_op<'a>(
        &'a self,
        data: MutexGuard<'a, Data<T>>,
        try: bool,
        val: T,
    ) -> SendOp<'a, T> {
        match self.inner().ty {
            ChannelType::Async => self.inner().async_send(data, val),
            ChannelType::Rendezvous => {
                self.inner().rendezvous_send(data, try, val)
            }
            ChannelType::Buffered => {
                self.inner().buffered_send(data, try, val)
            }
        }
    }

    fn inner(&self) -> &Inner<T> {
        &(self.0).0
    }

    fn id(&self) -> ChannelId {
        ChannelId::sender(self.inner().id)
    }
}

impl<T> Receiver<T> {
    /// Receive a value on this channel.
    ///
    /// If this is an asnychronous channel, `recv` only blocks when the
    /// buffer is empty.
    ///
    /// If this is a synchronous channel, `recv` only blocks when the buffer
    /// is empty.
    ///
    /// If this is a rendezvous channel, `recv` blocks until a corresponding
    /// `send` sends a value.
    ///
    /// For all channels, if the channel is closed and the buffer is empty,
    /// then `recv` always and immediately returns `None`. (If the buffer is
    /// non-empty on a closed channel, then values from the buffer are
    /// returned.)
    ///
    /// Values are guaranteed to be received in the same order that they
    /// are sent.
    ///
    /// This operation will never `panic!` but it can deadlock if the channel
    /// is never closed.
    pub fn recv(&self) -> Option<T> {
        self.recv_op(self.inner().lock(), false).unwrap()
    }

    fn try_recv(&self) -> Result<Option<T>, ()> {
        self.recv_op(self.inner().lock(), true).into_result()
    }

    fn recv_op<'a>(
        &'a self,
        data: MutexGuard<'a, Data<T>>,
        try: bool,
    ) -> RecvOp<'a, T> {
        self.inner().recv(data, try)
    }

    /// Return an iterator for receiving values on this channel.
    ///
    /// This iterator yields values (blocking if necessary) until the channel
    /// is closed.
    pub fn iter(&self) -> Iter<T> { Iter { chan: self.clone() } }

    fn inner(&self) -> &Inner<T> {
        &(self.0).0
    }

    fn id(&self) -> ChannelId {
        ChannelId::receiver(self.inner().id)
    }
}

impl<T> Channel<T> {
    fn new(size: usize, async: bool) -> Channel<T> {
        let (user, ty) = if async {
            (
                UserData::Queue(VecDeque::with_capacity(1024)),
                ChannelType::Async,
            )
        } else if size == 0 {
            (UserData::One(None), ChannelType::Rendezvous)
        } else {
            let mut queue = Vec::with_capacity(size);
            for _ in 0..size { queue.push(None); }
            (
                UserData::Ring { queue: queue, pos: 0, len: 0 },
                ChannelType::Buffered,
            )
        };
        Channel(Arc::new(Inner {
            id: NEXT_CHANNEL_ID.fetch_add(1, Ordering::SeqCst) as u64,
            notify: Notifier::new(),
            track: Tracker::new(),
            cond: Condvar::new(),
            cap: size,
            ty: ty,
            data: Mutex::new(Data {
                closed: false,
                waiting_send: 0,
                waiting_recv: 0,
                user: user,
            }),
        }))
    }

    fn into_sender(self) -> Sender<T> {
        self.0.track.add_sender();
        Sender(self)
    }

    fn into_receiver(self) -> Receiver<T> {
        self.0.track.add_receiver();
        Receiver(self)
    }
}

impl<T> Inner<T> {
    fn lock(&self) -> MutexGuard<Data<T>> {
        self.data.lock().unwrap()
    }

    fn close(&self) {
        let mut data = self.lock();
        data.closed = true;
        self.notify();
    }

    fn notify(&self) {
        self.cond.notify_all();
        self.notify.notify();
    }

    // The following are all of the core channel operations wrapped up in a
    // pretty bow. They all follow a reasonably similar pattern (with the
    // rendezvous `send` diverging the most) which is roughly:
    //
    // 1. Accept locked access to the channel's data.
    // 2. Check if the operation can continue. (For sends, we block if the
    //    buffer is full. For receives, we block if the buffer is empty.)
    // 2a. If we need to block, then we release the mutex given to us and
    //     block on a condition variable.
    // 2b. When awoken, go to (2).
    // 3. If we don't need to block, then we are guaranteed to synchronize*
    //    either by adding a value to the buffer or removing a value.
    // 4. Wake all other senders and receivers that are blocked on the
    //    same condition variable mentioned in (2a).
    //
    // * Not true for sending on rendezvous channels, since we need to make
    // sure that a recv consumes the value.
    //
    // Interestingly, the recv operation for all three types of channels
    // is exactly the same (modulo the underlying data structure).

    fn recv<'a>(
        &'a self,
        mut data: MutexGuard<'a, Data<T>>,
        try: bool,
    ) -> RecvOp<'a, T> {
        while data.user.len() == 0 {
            if data.closed {
                return RecvOp::closed(data);
            }
            if try {
                return RecvOp::blocked(data);
            }
            if self.ty == ChannelType::Rendezvous {
                self.notify();
            }
            data.waiting_recv += 1;
            data = self.cond.wait(data).unwrap();
            data.waiting_recv -= 1;
        }
        let val = data.user.pop();
        self.notify();
        RecvOp::ok(data, val)
    }

    // The asynchronous send is the easiest. Just push the data and notify.
    fn async_send<'a>(
        &'a self,
        mut data: MutexGuard<'a, Data<T>>,
        val: T,
    ) -> SendOp<'a, T> {
        data.user.push(val);
        self.notify();
        SendOp::ok(data)
    }

    // Buffered send is pretty much the dual of recv.
    fn buffered_send<'a>(
        &'a self,
        mut data: MutexGuard<'a, Data<T>>,
        try: bool,
        val: T,
    ) -> SendOp<'a, T> {
        while data.user.len() == self.cap {
            if data.closed {
                return SendOp::closed(data, val);
            }
            if try {
                return SendOp::blocked(data, val);
            }
            data = self.cond.wait(data).unwrap();
        }
        if data.closed {
            return SendOp::closed(data, val);
        }
        data.user.push(val);
        self.notify();
        SendOp::ok(data)
    }

    // Rendezvous send is the trickiest because we need to:
    //
    //  1) Make sure no other senders interfere. We do this by ensuring
    //     that there are no other waiting senders before trying to
    //     synchronize with a receiver.
    //  2) Wait for a receiver to consume the sent value. We do this by
    //     waiting on the condition variable until the value we put
    //     in the buffer is gone.
    fn rendezvous_send<'a>(
        &'a self,
        mut data: MutexGuard<'a, Data<T>>,
        try: bool,
        val: T,
    ) -> SendOp<'a, T> {
        while data.waiting_send == 1 || data.user.len() == 1 {
            if try {
                return SendOp::blocked(data, val);
            }
            data = self.cond.wait(data).unwrap();
        }
        // invariant: at most one sender can be here.
        if data.closed {
            return SendOp::closed(data, val);
        }
        if try && data.waiting_recv == 0 {
            return SendOp::blocked(data, val);
        }
        data.user.push(val);
        // We need to wake up any blocked receivers so they get a chance to
        // grab the value we pushed.
        self.notify();
        while data.user.len() == 1 {
            data.waiting_send += 1;
            data = self.cond.wait(data).unwrap();
            data.waiting_send -= 1;
        }
        // And now we need to make sure we wake up any previous blocked
        // senders so they get a shot at synchronizing.
        self.notify();
        SendOp::ok(data)
    }
}

impl<T> UserData<T> {
    fn push(&mut self, val: T) {
        match *self {
            UserData::One(ref mut val_loc) => *val_loc = Some(val),
            UserData::Ring { ref mut queue, pos, ref mut len } => {
                let cap = queue.len();
                assert!(*len < cap);
                queue[(pos + *len) % cap] = Some(val);
                *len += 1;
            }
            UserData::Queue(ref mut deque) => deque.push_back(val),
        }
    }

    fn pop(&mut self) -> T {
        match *self {
            UserData::One(ref mut val) => val.take().unwrap(),
            UserData::Ring { ref mut queue, ref mut pos, ref mut len } => {
                let cap = queue.len();
                assert!(*len <= cap);
                assert!(*len > 0);
                let val = queue[*pos].take().expect("non-null item in queue");
                *pos = (*pos + 1) % cap;
                *len -= 1;
                val
            }
            UserData::Queue(ref mut deque) => deque.pop_front().unwrap(),
        }
    }

    fn len(&self) -> usize {
        match *self {
            UserData::One(ref val) => if val.is_some() { 1 } else { 0 },
            UserData::Ring { len, .. } => len,
            UserData::Queue(ref deque) => deque.len(),
        }
    }
}

impl<'a, T> SendOp<'a, T> {
    fn ok(lock: MutexGuard<'a, Data<T>>) -> SendOp<'a, T> {
        SendOp { lock: lock, kind: SendOpKind::Ok }
    }

    fn closed(lock: MutexGuard<'a, Data<T>>, val: T) -> SendOp<'a, T> {
        SendOp { lock: lock, kind: SendOpKind::Closed(val) }
    }

    fn blocked(lock: MutexGuard<'a, Data<T>>, val: T) -> SendOp<'a, T> {
        SendOp { lock: lock, kind: SendOpKind::WouldBlock(val) }
    }

    fn unwrap(self) {
        self.into_result().ok().unwrap();
    }

    fn into_result(self) -> Result<(), T> {
        self.into_result_lock().1
    }

    fn into_result_lock(self) -> (MutexGuard<'a, Data<T>>, Result<(), T>) {
        match self.kind {
            SendOpKind::Ok => (self.lock, Ok(())),
            SendOpKind::WouldBlock(val) => (self.lock, Err(val)),
            SendOpKind::Closed(_) => {
                // If we're here, then there was a `send` on a closed
                // channel. But the only way a channel gets closed is if
                // all values that can `send` have been dropped.
                //
                // Unless there's a way to cause a destructor to run while
                // still retaining a valid reference to the sender, this should
                // be impossible (or there's a bug in my code).
                drop(self.lock); // avoid poisoning?
                panic!("cannot send on a closed channel");
            }
        }
    }
}

impl<'a, T> RecvOp<'a, T> {
    fn ok(lock: MutexGuard<'a, Data<T>>, val: T) -> RecvOp<'a, T> {
        RecvOp { lock: lock, kind: RecvOpKind::Ok(val) }
    }

    fn closed(lock: MutexGuard<'a, Data<T>>) -> RecvOp<'a, T> {
        RecvOp { lock: lock, kind: RecvOpKind::Closed }
    }

    fn blocked(lock: MutexGuard<'a, Data<T>>) -> RecvOp<'a, T> {
        RecvOp { lock: lock, kind: RecvOpKind::WouldBlock }
    }

    fn unwrap(self) -> Option<T> {
        self.into_result().ok().unwrap()
    }

    fn into_result(self) -> Result<Option<T>, ()> {
        self.into_result_lock().1
    }

    fn into_result_lock(self)
                       -> (MutexGuard<'a, Data<T>>, Result<Option<T>, ()>) {
        (self.lock, match self.kind {
            RecvOpKind::Ok(val) => Ok(Some(val)),
            RecvOpKind::WouldBlock => Err(()),
            RecvOpKind::Closed => Ok(None),
        })
    }
}

impl<T> Clone for Channel<T> {
    fn clone(&self) -> Channel<T> {
        Channel(self.0.clone())
    }
}

impl<T> Clone for Sender<T> {
    fn clone(&self) -> Sender<T> {
        self.0.clone().into_sender()
    }
}

impl<T> Clone for Receiver<T> {
    fn clone(&self) -> Receiver<T> {
        self.0.clone().into_receiver()
    }
}

impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        self.inner().track.remove_sender(|| self.inner().close());
    }
}

impl<T> Drop for Receiver<T> {
    fn drop(&mut self) {
        self.inner().track.remove_receiver(|| ());
    }
}

impl<T> Hash for Sender<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.id().hash(state);
    }
}

impl<T> Hash for Receiver<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.id().hash(state);
    }
}

impl<T> PartialEq for Sender<T> {
    fn eq(&self, other: &Sender<T>) -> bool {
        self.id() == other.id()
    }
}


impl<T> PartialEq for Receiver<T> {
    fn eq(&self, other: &Receiver<T>) -> bool {
        self.id() == other.id()
    }
}

impl<T> Eq for Sender<T> {}
impl<T> Eq for Receiver<T> {}

impl<T: fmt::Debug> fmt::Debug for Inner<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let data = self.data.lock().unwrap();
        try!(writeln!(f, "SyncInner {{"));
        try!(writeln!(f, "    id: {:?},", self.id));
        try!(writeln!(f, "    cap: {:?},", self.cap));
        try!(writeln!(f, "    notify: {:?},", self.notify));
        try!(writeln!(f, "    data: {:?},", &*data));
        write!(f, "}}")
    }
}

/// Synchronize on at most one channel send or receive operation.
///
/// This is a *heterogeneous* select. Namely, it supports any mix of
/// asynchronous, synchronous or rendezvous channels, any mix of send or
/// receive operations and any mix of types on channels.
///
/// Here is how select operates:
///
/// 1. It first examines all send and receive operations. If one or more of
/// them can succeed without blocking, then it randomly selects *one*,
/// executes the operation and runs the code in the corresponding arm.
/// 2. If all operations are blocked and there is a `default` arm, then the
/// code in the `default` arm is executed.
/// 3. If all operations are blocked and there is no `default` arm, then
/// `Select` will subscribe to all channels involved. `Select` will be
/// notified when state in one of the channels has changed. This will wake
/// `Select` up, and it will retry the steps in (1). If all operations remain
/// blocked, then (3) is repeated.
///
///
/// # Example
///
/// Which one synchronizes first?
///
/// ```
/// # #[macro_use] extern crate chan; fn main() {
/// use std::thread;
///
/// let (asend, arecv) = chan::sync(0);
/// let (bsend, brecv) = chan::sync(0);
///
/// thread::spawn(move || asend.send(5));
/// thread::spawn(move || brecv.recv());
///
/// chan_select! {
///     arecv.recv() -> val => {
///         println!("arecv received: {:?}", val);
///     },
///     bsend.send(10) => {
///         println!("bsend sent");
///     },
/// }
/// # }
/// ```
///
/// See the "failure modes" section below for more examples of the syntax.
///
///
/// # Example: empty select
///
/// An empty select, `chan_select! {}` will block indefinitely.
///
///
/// # Warning
///
/// `chan_select!` is simultaneously the most wonderful and horrifying thing
/// in this crate.
///
/// It is wonderful because it is essential for the
/// composition of channel operations in a concurrent program. Without select,
/// channels becomes much less expressive.
///
/// It is horrifying because the macro used to define it is *extremely*
/// sensitive. My hope is that it is simply my own lack of creativity at fault
/// and that others can help me fix it, but we may just be fundamentally stuck
/// with something like this until a proper compiler plugin can rescue us.
///
///
/// # Failure modes
///
/// When I say that this macro is sensitive, what I mean is, "if you misstep
/// on the syntax, you will be slapped upside the head with an irrelevant
/// error message."
///
/// Consider this:
///
/// ```ignore
/// chan_select! {
///     default => { println!("   ."); thread::sleep_ms(50); }
///     tick.recv() => println!("tick."),
///     boom.recv() => { println!("BOOM!"); return; },
/// }
/// ```
///
/// The compiler will tell you that the "recursion limit reached while
/// expanding the macro."
///
/// The actual problem is that **every** arm requires a trailing comma,
/// regardless of whether the arm is wrapped in a `{ ... }` or not. So it
/// should be written `default => { ... },`. (I'm told that various highly
/// skilled individuals could remove this restriction.)
///
/// Here's another. Can you spot the problem? I swear it's not commas this
/// time.
///
/// ```ignore
/// chan_select! {
///     tick.recv() => println!("tick."),
///     boom.recv() => { println!("BOOM!"); return; },
///     default => { println!("   ."); thread::sleep_ms(50); },
/// }
/// ```
///
/// This produces the same "recursion limit" error as above.
///
/// The actual problem is that the `default` arm *must* come first (or it must
/// be omitted completely).
///
/// Yet another:
///
/// ```ignore
/// chan_select! {
///     default => { println!("   ."); thread::sleep_ms(50); },
///     tick().recv() => println!("tick."),
///     boom.recv() => { println!("BOOM!"); return; },
/// }
/// ```
///
/// Again, you'll get the same "recursion limit" error.
///
/// The actual problem is that the channel operations must be of the form
/// `ident.recv()` or `ident.send()`. You cannot use an arbitrary expression
/// in place of `ident` that evaluates to a channel! To fix this, you must
/// rebind `tick()` to an identifier outside of `chan_select!`.
#[macro_export]
macro_rules! chan_select {
    ($select:ident, default => $default:expr, $(
        $chan:ident.$meth:ident($($send:expr)*)
        $(-> $name:pat)* => $code:expr,
    )+) => {
        chan_select!(
            $select,
            default => $default,
            $($chan.$meth($($send)*) $(-> $name)* => $code),+);
    };
    ($select:ident, default => $default:expr, $(
        $chan:ident.$meth:ident($($send:expr)*)
        $(-> $name:pat)* => $code:expr
    ),+) => {{
        let mut sel = &mut $select;
        $(let $chan = sel.$meth(&$chan $(, $send)*);)+
        let which = sel.try_select();
        $(if which == Some($chan.id()) {
            $(let $name = $chan.into_value();)*
            $code
        } else)+
        { $default }
    }};
    ($select:ident, $(
        $chan:ident.$meth:ident($($send:expr)*)
        $(-> $name:pat)* => $code:expr,
    )+) => {
        chan_select!(
            $select,
            $($chan.$meth($($send)*) $(-> $name)* => $code),+);
    };
    ($select:ident, $(
        $chan:ident.$meth:ident($($send:expr)*)
        $(-> $name:pat)* => $code:expr
    ),+) => {{
        let mut sel = &mut $select;
        $(let $chan = sel.$meth(&$chan $(, $send)*);)+
        let which = sel.select();
        $(if which == $chan.id() {
            $(let $name = $chan.into_value();)*
            $code
        } else)+
        { unreachable!() }
    }};
    (default => $default:expr) => {{ $default }};
    (default => $default:expr,) => {{ $default }};
    ($select:ident, default => $default:expr) => {{ $default }};
    ($select:ident, default => $default:expr,) => {{ $default }};
    ($select:ident) => {{
        let mut sel = &mut $select;
        sel.select(); // blocks forever
    }};
    () => {{
        let mut sel = $crate::Select::new();
        chan_select!(sel);
    }};
    ($($tt:tt)*) => {{
        let mut sel = $crate::Select::new();
        chan_select!(sel, $($tt)*);
    }};
}

#[cfg(test)]
mod tests {
    use std::thread;

    use super::{WaitGroup, async, sync};

    #[test]
    fn simple() {
        let (send, recv) = sync(1);
        send.send(5);
        assert_eq!(recv.recv(), Some(5));
    }

    #[test]
    fn simple_rendezvous() {
        let (send, recv) = sync(0);
        thread::spawn(move || send.send(5));
        assert_eq!(recv.recv(), Some(5));
    }

    #[test]
    fn simple_async() {
        let (send, recv) = async();
        send.send(5);
        assert_eq!(recv.recv(), Some(5));
    }

    #[test]
    fn simple_iter() {
        let (send, recv) = sync(1);
        thread::spawn(move || {
            for i in 0..100 {
                send.send(i);
            }
        });
        let recvd: Vec<i32> = recv.iter().collect();
        assert_eq!(recvd, (0..100).collect::<Vec<i32>>());
    }

    #[test]
    fn simple_iter_rendezvous() {
        let (send, recv) = sync(0);
        thread::spawn(move || {
            for i in 0..100 {
                send.send(i);
            }
        });
        let recvd: Vec<i32> = recv.iter().collect();
        assert_eq!(recvd, (0..100).collect::<Vec<i32>>());
    }

    #[test]
    fn simple_iter_async() {
        let (send, recv) = async();
        thread::spawn(move || {
            for i in 0..100 {
                send.send(i);
            }
        });
        let recvd: Vec<i32> = recv.iter().collect();
        assert_eq!(recvd, (0..100).collect::<Vec<i32>>());
    }

    #[test]
    fn simple_try() {
        let (send, recv) = sync(1);
        send.try_send(5).is_err();
        recv.try_recv().is_err();
    }

    #[test]
    fn simple_try_rendezvous() {
        let (send, recv) = sync(0);
        send.try_send(5).is_err();
        recv.try_recv().is_err();
    }

    #[test]
    fn simple_try_async() {
        let (send, recv) = async();
        recv.try_recv().is_err();
        send.try_send(5).is_ok();
    }

    #[test]
    fn select_manual() {
        let (s1, r1) = sync(1);
        let (s2, r2) = sync(1);
        s1.send(1);
        s2.send(2);

        let mut sel = ::Select::new();
        let mut sel = &mut sel;
        let c1 = sel.recv(&r1);
        let c2 = sel.recv(&r2);
        let which = sel.select();
        if which == c1.id() {
            println!("r1");
        } else if which == c2.id() {
            println!("r2");
        } else {
            unreachable!();
        }
    }

    #[test]
    fn select() {
        let (sticka, rticka) = sync(1);
        let (stickb, rtickb) = sync(1);
        let (stickc, rtickc) = sync(1);
        let (send, recv) = sync(0);
        thread::spawn(move || {
            loop {
                sticka.send("ticka");
                thread::sleep_ms(100);
                println!("RECV: {:?}", recv.recv());
            }
        });
        thread::spawn(move || {
            loop {
                stickb.send("tickb");
                thread::sleep_ms(50);
            }
        });
        thread::spawn(move || {
            thread::sleep_ms(1000);
            stickc.send(());
        });

        loop {
            let mut stop = false;
            chan_select! {
                rticka.recv() -> val => println!("{:?}", val),
                rtickb.recv() -> val => println!("{:?}", val),
                rtickc.recv() => stop = true,
                send.send("fubar".to_owned()) => println!("SENT!"),
            }
            if stop {
                break;
            }
        }
        println!("select done!");
    }

    #[test]
    fn mpmc() {
        let (send, recv) = sync(1);
        for i in 0..4 {
            let send = send.clone();
            thread::spawn(move || {
                for work in vec!['a', 'b', 'c'] {
                    send.send((i, work));
                }
            });
        }
        let wg_done = WaitGroup::new();
        for i in 0..4 {
            wg_done.add(1);
            let wg_done = wg_done.clone();
            let recv = recv.clone();
            thread::spawn(move || {
                for (sent_from, work) in recv {
                    println!("sent from {} to {}, work: {}",
                             sent_from, i, work);
                }
                println!("worker {} done!", i);
                wg_done.done();
            });
        }
        drop(send);
        wg_done.wait();
        println!("mpmc done!");
    }
}