1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
/*! This crate provides an implementation of a multi-producer, multi-consumer channel. Channels come in three varieties: 1. Asynchronous channels. Sends never block. Its buffer is only limited by the available resources on the system. 2. Synchronous buffered channels. Sends block when the buffer is full. The buffer is depleted by receiving on the channel. 3. Rendezvous channels (synchronous channels without a buffer). Sends block until a receive has consumed the value sent. When a sender and receiver synchronize, they are said to *rendezvous*. Asynchronous channels are created with `chan::async()`. Synchronous channels are created with `chan::sync(k)` where `k` is the buffer size. Rendezvous channels are created with `chan::sync(0)`. all channels are split into the same two types upon creation: a `Sender` and a `Receiver`. Additional senders and receivers can be created with reckless abandon by calling `clone`. When all senders are dropped, the channel is closed and no other sends are possible. In a channel with a buffer, receivers continue to consume values until the buffer is empty, at which point, a `None` value is always returned immediately. No special semantics are enforced when all receivers are dropped. Asynchronous sends will continue to work. Synchronous sends will block indefinitely when the buffer is full. A send on a rendezvous channel will also block indefinitely. (**NOTE**: This could be changed!) All channels satisfy *both* `Send` and `Sync` and can be freely mixed in `chan_select!`. Said differently, the synchronization semantics of a channel are encoded upon construction, but are otherwise indistinguishable to the type system. Values sent on channels are subject to the normal restrictions Rust has on values crossing thread boundaries. i.e., Values must implement `Send` and/or `Sync`. (An `Rc<T>` *cannot* be sent on a channel, but a channel can be sent on a channel!) # Example: rendezvous channel A simple example demonstrating a rendezvous channel: ``` use std::thread; let (send, recv) = chan::sync(0); thread::spawn(move || send.send(5)); assert_eq!(recv.recv(), Some(5)); // blocks until the previous send occurs ``` # Example: synchronous channel Similarly, an example demonstrating a synchronous channel: ``` let (send, recv) = chan::sync(1); send.send(5); // doesn't block because of the buffer assert_eq!(recv.recv(), Some(5)); ``` # Example: multiple producers and multiple consumers An example demonstrating multiple consumers and multiple producers: ``` use std::thread; let r = { let (s, r) = chan::sync(0); for letter in vec!['a', 'b', 'c', 'd'] { let s = s.clone(); thread::spawn(move || { for _ in 0..10 { s.send(letter); } }); } // This extra lexical scope will drop the initial // sender we created. Thus, the channel will be // closed when all threads spawned above has completed. r }; // A wait group lets us synchronize the completion of multiple threads. let wg = chan::WaitGroup::new(); for _ in 0..4 { wg.add(1); let wg = wg.clone(); let r = r.clone(); thread::spawn(move || { for letter in r { println!("Received letter: {}", letter); } wg.done(); }); } // If this was the end of the process and we didn't call `wg.wait()`, then // the process might quit before all of the consumers were done. // `wg.wait()` will block until all `wg.done()` calls have finished. wg.wait(); ``` # Example: Select on multiple channel sends/receives An example showing how to use `chan_select!` to synchronize on sends or receives. ``` #[macro_use] extern crate chan; use std::thread; // Emits the fibonacci sequence on the given channel until `quit` receives // a sentinel value. fn fibonacci(s: chan::Sender<u64>, quit: chan::Receiver<()>) { let (mut x, mut y) = (0, 1); loop { // Select will block until at least one of `s.send` or `quit.recv` // is ready to succeed. At which point, it will choose exactly one // send/receive to synchronize. chan_select! { s.send(x) => { let oldx = x; x = y; y = oldx + y; }, quit.recv() => { println!("quit"); return; } } } } fn main() { let (s, r) = chan::sync(0); let (qs, qr) = chan::sync(0); // Spawn a thread and ask for the first 10 numbers in the fibonacci // sequence. thread::spawn(move || { for _ in 0..10 { println!("{}", r.recv().unwrap()); } // Dropping all sending channels causes the receive channel to // immediately and always synchronize (because the channel is closed). drop(qs); }); fibonacci(s, qr); } ``` # Example: non-blocking sends/receives This crate specifically does not expose methods like `try_send` or `try_recv`. Instead, you should prefer using `chan_select!` to perform a non-blocking send or receive. This can be done by telling select what to do when no synchronization events are available. ``` # #[macro_use] extern crate chan; fn main() { let (s, _) = chan::sync(0); chan_select! { default => println!("Send failed."), s.send("some data") => println!("Send succeeded."), } # } ``` When `chan_select!` first runs, it will check if `s.send(...)` can succeed *without blocking*. If so, `chan_select!` will permit the channels to rendezvous. However, if there is no `recv` call to accept the send, then `chan_select!` will immediately execute the `default` arm. # Example: the sentinel channel idiom When writing concurrent programs with `chan`, you will often find that you need to somehow "wait" until some operation is done. For example, let's say you want to run a function in a separate thread, but wait until it completes. Here's one way to do it: ```rust use std::thread; fn do_work(done: chan::Sender<()>) { // do something // signal that we're done. done.send(()); } fn main() { let (sdone, rdone) = chan::sync(0); thread::spawn(move || do_work(sdone)); // block until work is done, and then quit the program. rdone.recv(); } ``` In effect, we've created a new channel that sends unit values. When we're done doing work, we send a unit value and `main` waits for it to be delivered. Another way of achieving the same thing is to simply close the channel. Once the channel is closed, any previously blocked receive operations become immediately unblocked. What's even cooler is that channels are closed automatically when all senders are dropped. So the new program looks something like this: ```rust use std::thread; fn do_work(_done: chan::Sender<()>) { // do something } fn main() { let (sdone, rdone) = chan::sync(0); thread::spawn(move || do_work(sdone)); // block until work is done, and then quit the program. rdone.recv(); } ``` We no longer need to explicitly do anything with the `done` channel. We give `do_work` ownership of the channel, but as soon as the function stops executing, `done` is dropped, the channel is closed and `rdone.recv()` unblocks. # Example: I want more! There are some examples in this crate's repository: https://github.com/BurntSushi/chan/tree/master/examples Here is a nice example using the `chan-signal` crate to read lines from stdin while gracefully quitting after receiving a `INT` or `TERM` signal: https://github.com/BurntSushi/chan-signal/blob/master/examples/read_names.rs A non-trivial program for periodically sending email with the output of running a command: https://github.com/BurntSushi/rust-cmail (The source is commented more heavily than normal.) # When are channel operations non-blocking? Non-blocking in this context means "a send/recv operation can synchronize immediately." (Under the hood, a mutex may still be acquired, which could block.) The following is a list of all cases where a channel operation is considered non-blocking: * A send on a synchronous channel whose buffer is not full. * A receive on a synchronous channel with a non-empty buffer. * A send on an asynchronous channel. * A rendezvous send or recv when a corresponding recv or send operation is already blocked, respectively. * A receive on any closed channel. Non-blocking semantics are important because they affect the behavior of `chan_select!`. In particular, a `chan_select!` with a `default` arm will execute the `default` case if and only if all other operations are blocked. # Which channel type should I use? [From Ken Kahn](http://www.eros-os.org/pipermail/e-lang/2003-January/008183.html): > About 25 years ago I went to dinner with Carl Hewitt and Robin Milner (of > CSS and pi calculus fame) and they were arguing about synchronous vs. > asynchronous communication primitives. Carl used the post office metaphor > while Robin used the telephone. Both quickly admitted that one can implement > one in the other. With three channel types to choose from, it may not always be clear which one you should use. In fact, there has been a long debate over which are better. Here are some rough guidelines: * Historically, asynchronous channels have been associated with the actor model, which means they're a little out of place in a library inspired by communicating sequential processes. Nevertheless, an unconstrained buffer can be occasionally useful. * Synchronous channels are useful because their stricter synchronization semantics can make it easier to reason about the flow of your program. In particular, with a rendezvous channel, one knows that a `send` unblocks only when a corresponding `recv` consumes the sent value. This makes it *feel* an awful lot like a function call! # Warning: leaks Channels can be leaked! In particular, if all receivers have been dropped, then any future sends will block. Usually this is indicative of a bug in your program. For example, consider a "generator" style pattern where a thread produces values on a channel and another thread consumes in an iterator. ```no_run use std::thread; let (s, r) = chan::sync(0); thread::spawn(move || { for val in r { if val >= 2 { break; } } }); s.send(1); s.send(2); // This will deadlock because the loop in the thread // above quits after receiving `2`. s.send(3); ``` If the iterator loop quits early, the channel's buffer could fill up, which will indefinitely block all future send operations. (These leaks/deadlocks are detectable in most circumstances, and a `send` operation could be made to wake up and either return an error or panic. The semantics here are still experimental.) # Warning: more leaks It will always be possible to leak a channel in safe code regardless of the channel's semantics. For example: ```no_run use std::mem::forget; let (s, r) = chan::sync::<()>(0); forget(s); // Blocks forever because the channel is never closed. r.recv(); ``` In this case, it is impossible for the channel to close because the internal reference count will never reach `0`. # Warning: performance The primary purpose of this crate is to provide a safe, concurrent abstraction. Notably, it is *not* a zero-cost abstraction. It is not even a near-zero-cost abstraction. Throughput on a channel is startlingly low (see the benchmarks in this crate's repository). Therefore, the channels provided in this crate are most useful as a means to structure concurrent programs at a coarse level. If your requirements call for performant synchronization of data, `chan` is not the crate you're looking for. # Prior art The semantics encoded in the channels provided by this crate should mirror or closely mirror the semantics provided by channels in Go. This includes select statements! The major difference between concurrent programs written with `chan` and concurrent programs written with Go is that Go programs can benefit from being fast and loose with creating goroutines. In `chan`, each "goroutine" is just an OS thread. In terms of writing code: 1. Go programs will feature explicit closing of channels. In `chan`, channels are closed **only** when all senders have been dropped. 2. Since there is no such thing as a "nil" channel in `chan`, the semantics Go has for nil channels (both sends and receives block indefinitely) do not exist in `chan`. 3. `chan` does not expose `len` or `cap` methods. (For no reason other than to start with a totally minimal API. In particular, calling `len` or `cap` on a channel is often The Wrong Thing. But not always. So this restriction will probably be lifted.) 4. In `chan`, all channels are either senders or receivers. There is no "bidirectional" channel. This is manifest in how channel memory is managed: channels are closed when all senders are dropped. Of course, Go is not the origin of these ideas, but it has been the strongest influence on the design of this library, and at least one of its authors has done substantial research on the integration of CSP and programming languages. */ #![deny(missing_docs)] extern crate rand; use std::collections::VecDeque; use std::fmt; use std::hash::{Hash, Hasher}; use std::ops::Drop; use std::sync::{Arc, Condvar, Mutex, MutexGuard}; use std::sync::atomic::{ATOMIC_USIZE_INIT, AtomicUsize, Ordering}; use std::thread; use notifier::Notifier; pub use select::{Select, SelectRecvHandle, SelectSendHandle}; use tracker::Tracker; pub use wait_group::WaitGroup; // This enables us to (in practice) uniquely identify any particular channel. // A better approach would be to use the pointer's address in memory, but it // looks like `Arc` doesn't support that (yet?). // // Any other ideas? ---AG // // N.B. This is combined with ChannelId to distinguish between the sending // and receiving halves of a channel. static NEXT_CHANNEL_ID: AtomicUsize = ATOMIC_USIZE_INIT; mod notifier; mod select; mod tracker; mod wait_group; /// Create a synchronous channel with a possibly empty buffer. /// /// When the `size` is zero, the buffer is empty and the channel becomes a /// rendezvous channel. A rendezvous channel blocks send operations until /// a corresponding receive operation consumes the sent value. /// /// When the `size` is non-zero, the send operations will only block when the /// buffer is full. Send operations only unblock when a receive operation /// removes an element from the buffer. /// /// Values are guaranteed to be received in the same order that they are sent. /// /// The send and receive values returned can be cloned arbitrarily (i.e., /// multi-producer/multi-consumer) and moved to other threads. /// /// When all senders are dropped, the channel is closed automatically. No /// more values may be sent on a closed channel. Once a channel is closed and /// the buffer is empty, all receive operations return `None` immediately. /// (If a channel is closed and there are still values in the buffer, then /// receive operations will retrieve those first.) /// /// When all receivers are dropped, no special action is taken. When the buffer /// is full, all subsequent send operations will block indefinitely. /// /// # Examples /// /// An example of a rendezvous channel: /// /// ``` /// use std::thread; /// /// let (send, recv) = chan::sync(0); /// thread::spawn(move || send.send(5)); /// assert_eq!(recv.recv(), Some(5)); // blocks until the previous send occurs /// ``` /// /// An example of a synchronous buffered channel: /// /// ``` /// let (send, recv) = chan::sync(1); /// /// send.send(5); // doesn't block because of the buffer /// assert_eq!(recv.recv(), Some(5)); /// /// drop(send); // closes the channel /// assert_eq!(recv.recv(), None); /// ``` pub fn sync<T>(size: usize) -> (Sender<T>, Receiver<T>) { let send = Channel::new(size, false); let recv = send.clone(); (send.into_sender(), recv.into_receiver()) } /// Create an asynchronous channel with an unbounded buffer. /// /// Since the buffer is unbounded, send operations always succeed immediately. /// /// Receive operations succeed only when there is at least one value in the /// buffer. /// /// Values are guaranteed to be received in the same order that they are sent. /// /// The send and receive values returned can be cloned arbitrarily (i.e., /// multi-producer/multi-consumer) and moved to other threads. /// /// When all senders are dropped, the channel is closed automatically. No /// more values may be sent on a closed channel. Once a channel is closed and /// the buffer is empty, all receive operations return `None` immediately. /// (If a channel is closed and there are still values in the buffer, then /// receive operations will retrieve those first.) /// /// When all receivers are dropped, no special action is taken. When the buffer /// is full, all subsequent send operations will block indefinitely. /// /// # Example /// /// Asynchronous channels are nice when you just want to enqueue a bunch /// of values up front: /// /// ``` /// let (s, r) = chan::async(); /// /// for i in 0..10 { /// s.send(i); /// } /// /// drop(s); // closing the channel lets the iterator stop /// let numbers: Vec<i32> = r.iter().collect(); /// assert_eq!(numbers, (0..10).collect::<Vec<i32>>()); /// ``` /// /// (Others should help me come up with more compelling examples of /// asynchronous channels.) pub fn async<T>() -> (Sender<T>, Receiver<T>) { let send = Channel::new(0, true); let recv = send.clone(); (send.into_sender(), recv.into_receiver()) } /// Creates a new rendezvous channel that is dropped after a timeout. /// /// `duration` is specified in milliseconds. /// /// When the channel is dropped, any receive operation on the returned channel /// will be unblocked. /// /// N.B. This will eventually be deprecated when we get a proper duration type. /// /// # Example /// /// ``` /// let wait = chan::after_ms(1000); /// // Unblocks after 1 second. /// wait.recv(); /// ``` pub fn after_ms(duration: u32) -> Receiver<()> { let (send, recv) = sync(0); thread::spawn(move || { thread::sleep_ms(duration); drop(send); }); recv } /// Creates a new rendezvous channel that is "ticked" every duration. /// /// `duration` is specified in milliseconds. /// /// When `duration` is `0`, no ticks are ever sent. /// /// When `duration` is non-zero, then a new channel is created and sent at /// every duration. When the sent channel is dropped, the timer is reset /// and the process repeats after the duration. /// /// This is especially convenient because it keeps the ticking in sync with /// the code that uses it. Namely, the ticks won't "build up." /// /// N.B. There is no way to reclaim the resources used by this function. /// If you stop receiving on the channel returned, then the thread spawned by /// `tick_ms` will block indefinitely. /// /// # Examples /// /// This is most useful when used in `chan_select!` because the received /// sentinel channel gets dropped only after the correspond arm has /// executed. At which point, the ticker is reset and waits to tick until /// `duration` milliseconds lapses *after* the `chan_select!` arm is executed. /// /// ``` /// # #[macro_use] extern crate chan; fn main() { /// use std::thread; /// /// let tick = chan::tick_ms(100); /// let boom = chan::after_ms(500); /// loop { /// chan_select! { /// default => { println!(" ."); thread::sleep_ms(50); }, /// tick.recv() => println!("tick."), /// boom.recv() => { println!("BOOM!"); return; }, /// } /// } /// # } /// ``` pub fn tick_ms(duration: u32) -> Receiver<Sender<()>> { let (send, recv) = sync(0); if duration == 0 { // Leak the send channel so that it never gets closed and // `recv` never synchronizes. ::std::mem::forget(send); } else { thread::spawn(move || { loop { thread::sleep_ms(duration); let (sdone, rdone) = sync(0); send.send(sdone); // Block until `sdone` gets closed by the caller. rdone.recv(); } }); } recv } /// A value that uniquely identifies one half of a channel. /// /// For any `s: Sender<T>`, `s.id() == s.clone().id()`. Similarly for /// any `r: Receiver<T>`. #[doc(hidden)] #[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)] pub struct ChannelId(ChannelKey); #[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)] enum ChannelKey { Sender(u64), Receiver(u64), } impl ChannelId { fn sender(id: u64) -> ChannelId { ChannelId(ChannelKey::Sender(id)) } fn receiver(id: u64) -> ChannelId { ChannelId(ChannelKey::Receiver(id)) } } /// An iterator over values received in a channel. pub struct Iter<T> { chan: Receiver<T>, } impl<T> Iterator for Iter<T> { type Item = T; fn next(&mut self) -> Option<T> { self.chan.recv() } } impl<T> IntoIterator for Receiver<T> { type Item = T; type IntoIter = Iter<T>; fn into_iter(self) -> Iter<T> { Iter { chan: self } } } impl<'a, T> IntoIterator for &'a Receiver<T> { type Item = T; type IntoIter = Iter<T>; fn into_iter(self) -> Iter<T> { self.iter() } } /// The sending half of a channel. /// /// Senders can be cloned any number of times and sent to other threads. /// /// Senders also implement `Sync`, which means they can be shared among threads /// without cloning if the channels can be proven to outlive the execution /// of the threads. /// /// When all sending halves of a channel are dropped, the channel is closed /// automatically. When a channel is closed, no new values can be sent on the /// channel. Also, all receive operations either return any values left in the /// buffer or return immediately with `None`. #[derive(Debug)] pub struct Sender<T>(Channel<T>); /// The receiving half of a channel. /// /// Receivers can be cloned any number of times and sent to other threads. /// /// Receivers also implement `Sync`, which means they can be shared among /// threads without cloning if the channels can be proven to outlive the /// execution of the threads. /// /// When all receiving halves of a channel are dropped, no special action is /// taken. If the buffer in the channel is full, all sends will block /// indefinitely. #[derive(Debug)] pub struct Receiver<T>(Channel<T>); /// All senders and receivers are just newtypes around a more base channel. /// /// i.e., All senders and receivers have direct access to any underlying /// buffer. #[derive(Debug)] struct Channel<T>(Arc<Inner<T>>); #[derive(Clone, Copy, Debug, Eq, PartialEq)] enum ChannelType { Async, Rendezvous, Buffered, } struct Inner<T> { /// An auto-incrementing id. id: u64, /// Manages subscriptions to channels (e.g., from a `chan_select!`). notify: Notifier, /// Tracks reference counts of senders and receivers. track: Tracker, /// A condition variable on the contents of `data`. cond: Condvar, /// The capacity of a synchronous buffer. This corresponds to the number /// of elements allowed in the buffer before send operations block. /// /// For asynchronous and rendezvous channels, this is always 0. cap: usize, /// The type of the channel. ty: ChannelType, /// Synchronized data in the channel. e.g., the queued values. data: Mutex<Data<T>>, } #[derive(Debug)] struct Data<T> { /// Whether the channel is closed or not. Once set to `true` it can never /// be changed. closed: bool, /// The number of senders waiting. (Currently only used in rendezvous /// channels.) waiting_send: usize, /// The number of receivers waiting. (Currently only used in rendezvous /// channels.) waiting_recv: usize, /// The actual data stored by the user. user: UserData<T>, } #[derive(Debug)] enum UserData<T> { /// Used for rendezvous channels. We only need to ever store one value. One(Option<T>), /// A ring buffer for synchronous channels. /// There's definitely a more efficient representation, but I don't think /// we really care. Ring { queue: Vec<Option<T>>, pos: usize, len: usize }, /// An unbounded queue for asynchronous channels. Queue(VecDeque<T>), } // The SendOp and RecvOp types unify the return values of all channel // operations. Their primary purpose is to permit the caller to retrieve the // channel's lock after the channel operation is done without the lock ever // being released. (This is critical functionality for `Select`.) // // N.B. The `WouldBlock` variants are only constructed if a non-blocking // operation is used (i.e., try_send or try_recv). struct SendOp<'a, T: 'a> { lock: MutexGuard<'a, Data<T>>, kind: SendOpKind<T>, } #[derive(Debug)] enum SendOpKind<T> { Ok, Closed(T), WouldBlock(T), } struct RecvOp<'a, T: 'a> { lock: MutexGuard<'a, Data<T>>, kind: RecvOpKind<T>, } #[derive(Debug)] enum RecvOpKind<T> { Ok(T), Closed, WouldBlock, } impl<T> Sender<T> { /// Send a value on this channel. /// /// If this is an asnychronous channel, `send` never blocks. /// /// If this is a synchronous channel, `send` only blocks when the buffer /// is full. /// /// If this is a rendezvous channel, `send` blocks until a corresponding /// `recv` retrieves `val`. /// /// Values are guaranteed to be received in the same order that they /// are sent. /// /// This operation will never `panic!` but it can deadlock. pub fn send(&self, val: T) { self.send_op(self.inner().lock(), false, val).unwrap() } fn try_send(&self, val: T) -> Result<(), T> { self.send_op(self.inner().lock(), true, val).into_result() } fn send_op<'a>( &'a self, data: MutexGuard<'a, Data<T>>, try: bool, val: T, ) -> SendOp<'a, T> { match self.inner().ty { ChannelType::Async => self.inner().async_send(data, val), ChannelType::Rendezvous => { self.inner().rendezvous_send(data, try, val) } ChannelType::Buffered => { self.inner().buffered_send(data, try, val) } } } fn inner(&self) -> &Inner<T> { &(self.0).0 } fn id(&self) -> ChannelId { ChannelId::sender(self.inner().id) } } impl<T> Receiver<T> { /// Receive a value on this channel. /// /// If this is an asnychronous channel, `recv` only blocks when the /// buffer is empty. /// /// If this is a synchronous channel, `recv` only blocks when the buffer /// is empty. /// /// If this is a rendezvous channel, `recv` blocks until a corresponding /// `send` sends a value. /// /// For all channels, if the channel is closed and the buffer is empty, /// then `recv` always and immediately returns `None`. (If the buffer is /// non-empty on a closed channel, then values from the buffer are /// returned.) /// /// Values are guaranteed to be received in the same order that they /// are sent. /// /// This operation will never `panic!` but it can deadlock if the channel /// is never closed. pub fn recv(&self) -> Option<T> { self.recv_op(self.inner().lock(), false).unwrap() } fn try_recv(&self) -> Result<Option<T>, ()> { self.recv_op(self.inner().lock(), true).into_result() } fn recv_op<'a>( &'a self, data: MutexGuard<'a, Data<T>>, try: bool, ) -> RecvOp<'a, T> { self.inner().recv(data, try) } /// Return an iterator for receiving values on this channel. /// /// This iterator yields values (blocking if necessary) until the channel /// is closed. pub fn iter(&self) -> Iter<T> { Iter { chan: self.clone() } } fn inner(&self) -> &Inner<T> { &(self.0).0 } fn id(&self) -> ChannelId { ChannelId::receiver(self.inner().id) } } impl<T> Channel<T> { fn new(size: usize, async: bool) -> Channel<T> { let (user, ty) = if async { ( UserData::Queue(VecDeque::with_capacity(1024)), ChannelType::Async, ) } else if size == 0 { (UserData::One(None), ChannelType::Rendezvous) } else { let mut queue = Vec::with_capacity(size); for _ in 0..size { queue.push(None); } ( UserData::Ring { queue: queue, pos: 0, len: 0 }, ChannelType::Buffered, ) }; Channel(Arc::new(Inner { id: NEXT_CHANNEL_ID.fetch_add(1, Ordering::SeqCst) as u64, notify: Notifier::new(), track: Tracker::new(), cond: Condvar::new(), cap: size, ty: ty, data: Mutex::new(Data { closed: false, waiting_send: 0, waiting_recv: 0, user: user, }), })) } fn into_sender(self) -> Sender<T> { self.0.track.add_sender(); Sender(self) } fn into_receiver(self) -> Receiver<T> { self.0.track.add_receiver(); Receiver(self) } } impl<T> Inner<T> { fn lock(&self) -> MutexGuard<Data<T>> { self.data.lock().unwrap() } fn close(&self) { let mut data = self.lock(); data.closed = true; self.notify(); } fn notify(&self) { self.cond.notify_all(); self.notify.notify(); } // The following are all of the core channel operations wrapped up in a // pretty bow. They all follow a reasonably similar pattern (with the // rendezvous `send` diverging the most) which is roughly: // // 1. Accept locked access to the channel's data. // 2. Check if the operation can continue. (For sends, we block if the // buffer is full. For receives, we block if the buffer is empty.) // 2a. If we need to block, then we release the mutex given to us and // block on a condition variable. // 2b. When awoken, go to (2). // 3. If we don't need to block, then we are guaranteed to synchronize* // either by adding a value to the buffer or removing a value. // 4. Wake all other senders and receivers that are blocked on the // same condition variable mentioned in (2a). // // * Not true for sending on rendezvous channels, since we need to make // sure that a recv consumes the value. // // Interestingly, the recv operation for all three types of channels // is exactly the same (modulo the underlying data structure). fn recv<'a>( &'a self, mut data: MutexGuard<'a, Data<T>>, try: bool, ) -> RecvOp<'a, T> { while data.user.len() == 0 { if data.closed { return RecvOp::closed(data); } if try { return RecvOp::blocked(data); } if self.ty == ChannelType::Rendezvous { self.notify(); } data.waiting_recv += 1; data = self.cond.wait(data).unwrap(); data.waiting_recv -= 1; } let val = data.user.pop(); self.notify(); RecvOp::ok(data, val) } // The asynchronous send is the easiest. Just push the data and notify. fn async_send<'a>( &'a self, mut data: MutexGuard<'a, Data<T>>, val: T, ) -> SendOp<'a, T> { data.user.push(val); self.notify(); SendOp::ok(data) } // Buffered send is pretty much the dual of recv. fn buffered_send<'a>( &'a self, mut data: MutexGuard<'a, Data<T>>, try: bool, val: T, ) -> SendOp<'a, T> { while data.user.len() == self.cap { if data.closed { return SendOp::closed(data, val); } if try { return SendOp::blocked(data, val); } data = self.cond.wait(data).unwrap(); } if data.closed { return SendOp::closed(data, val); } data.user.push(val); self.notify(); SendOp::ok(data) } // Rendezvous send is the trickiest because we need to: // // 1) Make sure no other senders interfere. We do this by ensuring // that there are no other waiting senders before trying to // synchronize with a receiver. // 2) Wait for a receiver to consume the sent value. We do this by // waiting on the condition variable until the value we put // in the buffer is gone. fn rendezvous_send<'a>( &'a self, mut data: MutexGuard<'a, Data<T>>, try: bool, val: T, ) -> SendOp<'a, T> { while data.waiting_send == 1 || data.user.len() == 1 { if try { return SendOp::blocked(data, val); } data = self.cond.wait(data).unwrap(); } // invariant: at most one sender can be here. if data.closed { return SendOp::closed(data, val); } if try && data.waiting_recv == 0 { return SendOp::blocked(data, val); } data.user.push(val); // We need to wake up any blocked receivers so they get a chance to // grab the value we pushed. self.notify(); while data.user.len() == 1 { data.waiting_send += 1; data = self.cond.wait(data).unwrap(); data.waiting_send -= 1; } // And now we need to make sure we wake up any previous blocked // senders so they get a shot at synchronizing. self.notify(); SendOp::ok(data) } } impl<T> UserData<T> { fn push(&mut self, val: T) { match *self { UserData::One(ref mut val_loc) => *val_loc = Some(val), UserData::Ring { ref mut queue, pos, ref mut len } => { let cap = queue.len(); assert!(*len < cap); queue[(pos + *len) % cap] = Some(val); *len += 1; } UserData::Queue(ref mut deque) => deque.push_back(val), } } fn pop(&mut self) -> T { match *self { UserData::One(ref mut val) => val.take().unwrap(), UserData::Ring { ref mut queue, ref mut pos, ref mut len } => { let cap = queue.len(); assert!(*len <= cap); assert!(*len > 0); let val = queue[*pos].take().expect("non-null item in queue"); *pos = (*pos + 1) % cap; *len -= 1; val } UserData::Queue(ref mut deque) => deque.pop_front().unwrap(), } } fn len(&self) -> usize { match *self { UserData::One(ref val) => if val.is_some() { 1 } else { 0 }, UserData::Ring { len, .. } => len, UserData::Queue(ref deque) => deque.len(), } } } impl<'a, T> SendOp<'a, T> { fn ok(lock: MutexGuard<'a, Data<T>>) -> SendOp<'a, T> { SendOp { lock: lock, kind: SendOpKind::Ok } } fn closed(lock: MutexGuard<'a, Data<T>>, val: T) -> SendOp<'a, T> { SendOp { lock: lock, kind: SendOpKind::Closed(val) } } fn blocked(lock: MutexGuard<'a, Data<T>>, val: T) -> SendOp<'a, T> { SendOp { lock: lock, kind: SendOpKind::WouldBlock(val) } } fn unwrap(self) { self.into_result().ok().unwrap(); } fn into_result(self) -> Result<(), T> { self.into_result_lock().1 } fn into_result_lock(self) -> (MutexGuard<'a, Data<T>>, Result<(), T>) { match self.kind { SendOpKind::Ok => (self.lock, Ok(())), SendOpKind::WouldBlock(val) => (self.lock, Err(val)), SendOpKind::Closed(_) => { // If we're here, then there was a `send` on a closed // channel. But the only way a channel gets closed is if // all values that can `send` have been dropped. // // Unless there's a way to cause a destructor to run while // still retaining a valid reference to the sender, this should // be impossible (or there's a bug in my code). drop(self.lock); // avoid poisoning? panic!("cannot send on a closed channel"); } } } } impl<'a, T> RecvOp<'a, T> { fn ok(lock: MutexGuard<'a, Data<T>>, val: T) -> RecvOp<'a, T> { RecvOp { lock: lock, kind: RecvOpKind::Ok(val) } } fn closed(lock: MutexGuard<'a, Data<T>>) -> RecvOp<'a, T> { RecvOp { lock: lock, kind: RecvOpKind::Closed } } fn blocked(lock: MutexGuard<'a, Data<T>>) -> RecvOp<'a, T> { RecvOp { lock: lock, kind: RecvOpKind::WouldBlock } } fn unwrap(self) -> Option<T> { self.into_result().ok().unwrap() } fn into_result(self) -> Result<Option<T>, ()> { self.into_result_lock().1 } fn into_result_lock(self) -> (MutexGuard<'a, Data<T>>, Result<Option<T>, ()>) { (self.lock, match self.kind { RecvOpKind::Ok(val) => Ok(Some(val)), RecvOpKind::WouldBlock => Err(()), RecvOpKind::Closed => Ok(None), }) } } impl<T> Clone for Channel<T> { fn clone(&self) -> Channel<T> { Channel(self.0.clone()) } } impl<T> Clone for Sender<T> { fn clone(&self) -> Sender<T> { self.0.clone().into_sender() } } impl<T> Clone for Receiver<T> { fn clone(&self) -> Receiver<T> { self.0.clone().into_receiver() } } impl<T> Drop for Sender<T> { fn drop(&mut self) { self.inner().track.remove_sender(|| self.inner().close()); } } impl<T> Drop for Receiver<T> { fn drop(&mut self) { self.inner().track.remove_receiver(|| ()); } } impl<T> Hash for Sender<T> { fn hash<H: Hasher>(&self, state: &mut H) { self.id().hash(state); } } impl<T> Hash for Receiver<T> { fn hash<H: Hasher>(&self, state: &mut H) { self.id().hash(state); } } impl<T> PartialEq for Sender<T> { fn eq(&self, other: &Sender<T>) -> bool { self.id() == other.id() } } impl<T> PartialEq for Receiver<T> { fn eq(&self, other: &Receiver<T>) -> bool { self.id() == other.id() } } impl<T> Eq for Sender<T> {} impl<T> Eq for Receiver<T> {} impl<T: fmt::Debug> fmt::Debug for Inner<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let data = self.data.lock().unwrap(); try!(writeln!(f, "SyncInner {{")); try!(writeln!(f, " id: {:?},", self.id)); try!(writeln!(f, " cap: {:?},", self.cap)); try!(writeln!(f, " notify: {:?},", self.notify)); try!(writeln!(f, " data: {:?},", &*data)); write!(f, "}}") } } /// Synchronize on at most one channel send or receive operation. /// /// This is a *heterogeneous* select. Namely, it supports any mix of /// asynchronous, synchronous or rendezvous channels, any mix of send or /// receive operations and any mix of types on channels. /// /// Here is how select operates: /// /// 1. It first examines all send and receive operations. If one or more of /// them can succeed without blocking, then it randomly selects *one*, /// executes the operation and runs the code in the corresponding arm. /// 2. If all operations are blocked and there is a `default` arm, then the /// code in the `default` arm is executed. /// 3. If all operations are blocked and there is no `default` arm, then /// `Select` will subscribe to all channels involved. `Select` will be /// notified when state in one of the channels has changed. This will wake /// `Select` up, and it will retry the steps in (1). If all operations remain /// blocked, then (3) is repeated. /// /// /// # Example /// /// Which one synchronizes first? /// /// ``` /// # #[macro_use] extern crate chan; fn main() { /// use std::thread; /// /// let (asend, arecv) = chan::sync(0); /// let (bsend, brecv) = chan::sync(0); /// /// thread::spawn(move || asend.send(5)); /// thread::spawn(move || brecv.recv()); /// /// chan_select! { /// arecv.recv() -> val => { /// println!("arecv received: {:?}", val); /// }, /// bsend.send(10) => { /// println!("bsend sent"); /// }, /// } /// # } /// ``` /// /// See the "failure modes" section below for more examples of the syntax. /// /// /// # Example: empty select /// /// An empty select, `chan_select! {}` will block indefinitely. /// /// /// # Warning /// /// `chan_select!` is simultaneously the most wonderful and horrifying thing /// in this crate. /// /// It is wonderful because it is essential for the /// composition of channel operations in a concurrent program. Without select, /// channels becomes much less expressive. /// /// It is horrifying because the macro used to define it is *extremely* /// sensitive. My hope is that it is simply my own lack of creativity at fault /// and that others can help me fix it, but we may just be fundamentally stuck /// with something like this until a proper compiler plugin can rescue us. /// /// /// # Failure modes /// /// When I say that this macro is sensitive, what I mean is, "if you misstep /// on the syntax, you will be slapped upside the head with an irrelevant /// error message." /// /// Consider this: /// /// ```ignore /// chan_select! { /// default => { println!(" ."); thread::sleep_ms(50); } /// tick.recv() => println!("tick."), /// boom.recv() => { println!("BOOM!"); return; }, /// } /// ``` /// /// The compiler will tell you that the "recursion limit reached while /// expanding the macro." /// /// The actual problem is that **every** arm requires a trailing comma, /// regardless of whether the arm is wrapped in a `{ ... }` or not. So it /// should be written `default => { ... },`. (I'm told that various highly /// skilled individuals could remove this restriction.) /// /// Here's another. Can you spot the problem? I swear it's not commas this /// time. /// /// ```ignore /// chan_select! { /// tick.recv() => println!("tick."), /// boom.recv() => { println!("BOOM!"); return; }, /// default => { println!(" ."); thread::sleep_ms(50); }, /// } /// ``` /// /// This produces the same "recursion limit" error as above. /// /// The actual problem is that the `default` arm *must* come first (or it must /// be omitted completely). /// /// Yet another: /// /// ```ignore /// chan_select! { /// default => { println!(" ."); thread::sleep_ms(50); }, /// tick().recv() => println!("tick."), /// boom.recv() => { println!("BOOM!"); return; }, /// } /// ``` /// /// Again, you'll get the same "recursion limit" error. /// /// The actual problem is that the channel operations must be of the form /// `ident.recv()` or `ident.send()`. You cannot use an arbitrary expression /// in place of `ident` that evaluates to a channel! To fix this, you must /// rebind `tick()` to an identifier outside of `chan_select!`. #[macro_export] macro_rules! chan_select { ($select:ident, default => $default:expr, $( $chan:ident.$meth:ident($($send:expr)*) $(-> $name:pat)* => $code:expr, )+) => { chan_select!( $select, default => $default, $($chan.$meth($($send)*) $(-> $name)* => $code),+); }; ($select:ident, default => $default:expr, $( $chan:ident.$meth:ident($($send:expr)*) $(-> $name:pat)* => $code:expr ),+) => {{ let mut sel = &mut $select; $(let $chan = sel.$meth(&$chan $(, $send)*);)+ let which = sel.try_select(); $(if which == Some($chan.id()) { $(let $name = $chan.into_value();)* $code } else)+ { $default } }}; ($select:ident, $( $chan:ident.$meth:ident($($send:expr)*) $(-> $name:pat)* => $code:expr, )+) => { chan_select!( $select, $($chan.$meth($($send)*) $(-> $name)* => $code),+); }; ($select:ident, $( $chan:ident.$meth:ident($($send:expr)*) $(-> $name:pat)* => $code:expr ),+) => {{ let mut sel = &mut $select; $(let $chan = sel.$meth(&$chan $(, $send)*);)+ let which = sel.select(); $(if which == $chan.id() { $(let $name = $chan.into_value();)* $code } else)+ { unreachable!() } }}; (default => $default:expr) => {{ $default }}; (default => $default:expr,) => {{ $default }}; ($select:ident, default => $default:expr) => {{ $default }}; ($select:ident, default => $default:expr,) => {{ $default }}; ($select:ident) => {{ let mut sel = &mut $select; sel.select(); // blocks forever }}; () => {{ let mut sel = $crate::Select::new(); chan_select!(sel); }}; ($($tt:tt)*) => {{ let mut sel = $crate::Select::new(); chan_select!(sel, $($tt)*); }}; } #[cfg(test)] mod tests { use std::thread; use super::{WaitGroup, async, sync}; #[test] fn simple() { let (send, recv) = sync(1); send.send(5); assert_eq!(recv.recv(), Some(5)); } #[test] fn simple_rendezvous() { let (send, recv) = sync(0); thread::spawn(move || send.send(5)); assert_eq!(recv.recv(), Some(5)); } #[test] fn simple_async() { let (send, recv) = async(); send.send(5); assert_eq!(recv.recv(), Some(5)); } #[test] fn simple_iter() { let (send, recv) = sync(1); thread::spawn(move || { for i in 0..100 { send.send(i); } }); let recvd: Vec<i32> = recv.iter().collect(); assert_eq!(recvd, (0..100).collect::<Vec<i32>>()); } #[test] fn simple_iter_rendezvous() { let (send, recv) = sync(0); thread::spawn(move || { for i in 0..100 { send.send(i); } }); let recvd: Vec<i32> = recv.iter().collect(); assert_eq!(recvd, (0..100).collect::<Vec<i32>>()); } #[test] fn simple_iter_async() { let (send, recv) = async(); thread::spawn(move || { for i in 0..100 { send.send(i); } }); let recvd: Vec<i32> = recv.iter().collect(); assert_eq!(recvd, (0..100).collect::<Vec<i32>>()); } #[test] fn simple_try() { let (send, recv) = sync(1); send.try_send(5).is_err(); recv.try_recv().is_err(); } #[test] fn simple_try_rendezvous() { let (send, recv) = sync(0); send.try_send(5).is_err(); recv.try_recv().is_err(); } #[test] fn simple_try_async() { let (send, recv) = async(); recv.try_recv().is_err(); send.try_send(5).is_ok(); } #[test] fn select_manual() { let (s1, r1) = sync(1); let (s2, r2) = sync(1); s1.send(1); s2.send(2); let mut sel = ::Select::new(); let mut sel = &mut sel; let c1 = sel.recv(&r1); let c2 = sel.recv(&r2); let which = sel.select(); if which == c1.id() { println!("r1"); } else if which == c2.id() { println!("r2"); } else { unreachable!(); } } #[test] fn select() { let (sticka, rticka) = sync(1); let (stickb, rtickb) = sync(1); let (stickc, rtickc) = sync(1); let (send, recv) = sync(0); thread::spawn(move || { loop { sticka.send("ticka"); thread::sleep_ms(100); println!("RECV: {:?}", recv.recv()); } }); thread::spawn(move || { loop { stickb.send("tickb"); thread::sleep_ms(50); } }); thread::spawn(move || { thread::sleep_ms(1000); stickc.send(()); }); loop { let mut stop = false; chan_select! { rticka.recv() -> val => println!("{:?}", val), rtickb.recv() -> val => println!("{:?}", val), rtickc.recv() => stop = true, send.send("fubar".to_owned()) => println!("SENT!"), } if stop { break; } } println!("select done!"); } #[test] fn mpmc() { let (send, recv) = sync(1); for i in 0..4 { let send = send.clone(); thread::spawn(move || { for work in vec!['a', 'b', 'c'] { send.send((i, work)); } }); } let wg_done = WaitGroup::new(); for i in 0..4 { wg_done.add(1); let wg_done = wg_done.clone(); let recv = recv.clone(); thread::spawn(move || { for (sent_from, work) in recv { println!("sent from {} to {}, work: {}", sent_from, i, work); } println!("worker {} done!", i); wg_done.done(); }); } drop(send); wg_done.wait(); println!("mpmc done!"); } }